以武汉市光谷一路—高新四路排水通道工程为例,运用有限元分析软件PLAXIS,对双侧壁导坑法隧道的施工过程开展数值模拟,重点对不同施工阶段产生的地表沉降和拱顶沉降等进行分析。计算结果表明:在隧道开挖过程中,洞周土体均发生不同程度的变形,不同施工阶段对应的地表横向沉降槽形状基本与Peck曲线相近,且地表沉降的最大值在隧道轴线对应的地表处,其中S6a、S6b区段施工完成后发生的地表沉降最大值分别为2.1、1.2 mm;另一方面,S6b、S6a区段双侧壁导坑法的拱顶沉降最大值分别为6.9、2.8 mm,拱底隆起最大值分别为7.9、7.3 mm,且最大值发生位置均在隧道轴线对应的拱顶及拱底处。
近几年全球气候受到厄尔尼诺因素的影响,短时间的强降水突然增多,导致城市内涝灾害严重。为推进武汉“四水共治”建设,武汉光谷交通建设有限公司拟建设光谷一路—高新四路排水通道工程。该项目起于黄龙山北路,沿光谷一路西侧规划走廊向南延伸,止于高新四路路口,全长2 300 m,其中矿山法暗挖隧道780 m。暗挖隧道穿越红黏土等特殊性岩土地段,地质条件复杂。
目前,中外学者采用理论分析、数值模拟、模型试验等手段,对大断面矿山法隧道施工过程中的应力及变形进行了大量研究[1‐3]。邓伟等[4]依托广西百色达康隧道实际工程,模拟了大断面隧道采用双侧壁导坑法施工流程,探究了动态施工过程中围岩变形规律和支护结构受力变化规律;李鹏宇等[5]依托重庆地铁5号线和睦站,对结合双侧壁导坑法的TBM先隧后站技术进行工序优选研究;韩立志等[6]以柞山高速段小岭隧道为依托,建立数值分析模型对隧道洞口浅埋偏压段开挖与支护过程进行数值分析,探讨了围岩与衬砌材料的变形与应力变化规律。
现以武汉市光谷一路—高新四路排水通道工程为例,运用有限元分析软件PLAXIS,建立双侧壁导坑法隧道计算模型,对隧道开挖和支护全过程进行数值分析,对双侧壁导坑法隧道不同施工阶段下的地表沉降和拱顶沉降等进行分析。
1)S6b区段选取AK0+675附近下覆红黏土层
截面为研究对象。AK0+675附近高程为37.07 m,场地内地层概况为:地表分布有厚薄不均的人工填土,其下依次为黏土和红黏土,再往下为灰岩。隧道穿越黏土层,宽为13.56 m,高为7.01 m。模型地表以下依次分布着1.9 m深的人工填土,18.0 m深的黏土,4.0 m深的红黏土和13.0 m深的灰岩。
2)S6a区段选取AK0+175附近隧道截面为研
究对象。AK0+175附近高程为37.59 m,场地内地层概况为:地表分布有厚薄不均的黏土,其下依次为9‐1‐1强风化泥岩、9‐1‐2中风化泥岩。隧道穿越9‐1‐2中风化泥岩层,宽为13.44 m,高为6.89 m。模型地表以下依次分布着2.5 m深的黏土,2.5 m深的9‐1‐1强风化泥岩和35.5 m深的中风化泥岩。
充分考虑开挖影响范围和边界效应,计算模型水平方向总长取100 m,竖直方向视土层深度而定。计算模型的两侧边界采用法向约束底部边界采用全约束(法向、切向约束)。
计算分析中,土体采用三角形15节点单元进行模拟,S6b区段单元数目为715,节点数目为6 068;S6a区段单元数目为878,节点数目为7 298;有限元计算网格划分如图2所示。其中,初衬、二衬及临时
衬砌均采用板单元模拟,锚杆等效到周围土体参数中,其余均采用实体单元模拟,衬砌与土体接触面上设置接触单元。
表5双侧壁导坑法隧道计算步骤
由图3、图4可以看出,在隧道开挖过程中,洞周土体均发生不同程度的变形,随着施工阶段的进行,土体位移逐渐增大。由于左侧导坑先行开挖,造成左侧地表率先产生沉降变形。开挖完成以后,最大的沉降变形发生在隧道中轴线对应的地表处。同时,从图5、图6可以看出,随着隧道的开挖,地表沉降最大值逐渐增大。施作二衬后,地表沉降最大值及沉降槽范围均有所减小。隧道开挖完成后,地表横向沉降槽形状基本与Peck曲线相近。S6b区段地表最大沉降值为2.1 mm,地表沉降槽影响范围在隧道轴线20 m范围内。S6a区段地表最大沉降值为1.2 mm,地表沉降槽影响范围在隧道轴线20 m范围内。
当施工完成后,S6b区段双侧壁导坑法的拱顶沉降最大值为6.9 mm,拱底隆起最大值为7.9 mm,均发生在隧道轴线处。S6a区段双侧壁导坑法的拱顶沉降最大值为2.8 mm,拱底隆起最大值为7.3 mm,同样发生在隧道轴线处。
1)在隧道开挖过程中,洞周土体均发生不同程度的变形。开挖完成后,地表沉降曲线呈凹槽型,其形状与Peck曲线相近,同时产生地表沉降的最大值在隧道轴线对应的地表处。S6b区段地表最大沉降值为2.1 mm,地表沉降槽影响范围在隧道轴线20 m范围内。S6a区段地表最大沉降值为1.2 mm,地表沉降槽影响范围在隧道轴线20 m范围内。
2)隧道开挖过程中,开挖侧导坑依次产生较为明显的变形。开挖完成后,隧道衬砌竖向位移沿轴线对称,其中S6b、S6a区段双侧壁导坑法的拱顶沉降最大值分别为6.9、2.8 mm,拱底隆起最大值分别为7.9、7.3 mm,且最大值发生位置均在隧道轴线对应的拱顶及拱底处。
内容源于川隧公众号,旨在分享,如有侵权,请联系删除